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Quantal Symmetries in the Non-Linear Sigma
Model With Maxwell–Chern–Simons Term1

Wang Yong-Long2,3 and Li Zi-Ping2
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The quantal symmetry property in the CP1 non-linear sigma model with Abelian–
Maxwell–Chern–Simons (AMCS) term in 2 + 1 dimensions is studied. In the Coulomb
gauge, the system is quantized in the Faddeev–Senjanovic (FS) path-integral formalism.
The canonical Ward identities for proper vertices under local gauge transformation are
derived. Based on the quantal symmetries of a constrained Hamiltonian system, the
fractional spin at the quantum level of this system is also presented as those of the
system without Maxwell term.

KEY WORDS: constrained Hamiltonian system; fractional spin; CP1 non-linear sigma
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1. INTRODUCTION

In (2 + 1) dimensions space-time there exists the interesting possibility of
fractional angular momentum and exotic statistics (Dowker, 1972; Laidlaw and
DeWitt, 1971; Wu, 1984). It provides a realization of the fractional spin and statis-
tics that is the (2 + 1) dimensional O(3) nonlinear sigma model with a topological
action (Bowick et al., 1986; Wilczek and Zee, 1983a; Wu and Zee, 1984). The
model modified by the additions of Hopf term characterizing maps from S3 to
S2 reveals the occurrence of fractional spin and statistics (Bowick et al., 1986
Mackenzie, 1988; Tsurumaru and Tsutsui, 1999; Wilczek and Zee, 1983b). The
system can be cast in the form of a genuine gauge theory by the inclusion of the
Chern-Simons (CS) term which implements fractional and statistics (Mukherjee,
1997; Panigrahi, et al., 1988). Recently, the O(3) non-linear sigma model with
Hopf and CS terms is discussed in classical and quantum level (Banerjee, 1994;
Li, 1996a), and the O(3) non-linear sigma model coupled to a topologically massive
U (1) gauge field including the Maxwell term (Karabali, 1987) is discussed. The
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fractional spin and statistics based on the canonical approach are always obtained
through symmetric energy-momentum tensor not Noether’s law. The CP1 nonlin-
ear sigma model which is intimately related to the O(3) nonlinear sigma model
in the long-range limit has received a lot of attention recently in connection with
high-Tc superconductivity (Polyakov, 1988). Scalar (Jiang and Li, 1999) and spinor
(Li and Li, 2002) QED with CS term are discussed, in which the fractional spin
and statistics is revealed, too. We shall consider CP1 non-linear sigma model with
AMCS term, and shall adopt path-integral quantization for this system to explain
the existence of fractional spin rigorously at the quantum level. And the canonical
Ward identities for proper vertices under local gauge transformation are derived.

2. FS PATH-INTEGRAL QUANTIZATION

We consider the gauged CP1 nonlinearσ model with Maxwell–Chern–Simons
term in (2 + 1) dimensions, and the Lagrangian of the system is given by (Karabali,
1987; Li, 1996a; Panigrahi et al., 1988)

L = 1

f
(Dµ Zk)∗(Dµ Zk) − 1

4
Fµν Fµν + θ

4π2
εµνλ Aµ∂ν Aλ (1)

where f is coupling constant and assumed f = 1, k = 1, 2 and Zk is a two-
component complex field which satisfies the constraint

Zk Z∗
k = |Z1|2 + |Z2|2 = 1 (2)

and the covariant derivative Dµ = ∂µ − i Aµ, and Fµν = ∂µ Aν − ∂ν Aµ. Here Aµ

is the CS gauge field. The canonical momentums conjugate to the fields Zk , Z∗
k ,

and Aµ are

πk = ∂L

∂ Żk
= (D0 Zk)∗, π̄ k = ∂L

∂ Ż∗
k

= D0 Zk , π i = ∂L

∂ Ȧi

= −F0i + θ

2π2
εi j A j , π0 = ∂L

∂ Ȧ0
= 0 (3)

respectively. The primary constraints of the system are given by (Panigrahi et al.,
1988)


0 = π0 ≈ 0 (4)

θ0 = Zk Z∗
k − 1 ≈ 0 (5)

where symbol “≈” means weak equality in Dirac sense. The canonical Hamiltonian
density corresponding to the Lagrangian (1) is given by

Hc = πµ Ȧµ + π k Żk + π̄ k Z∗
k − L = H0 + A0

[
J 0 −

(
∂iπ

i + θ

2π2
εi j∂i A j

)]
(6)
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with

H0 = 2π k π̄ k − 1

2
π iπ i − (Dµ Zk)∗(Dµ Zk)

+ 1

4
Fi j Fi j − θ2

32π4
Ai Ai + θ

2π2
εi jπ

i A j (7)

and J0 = i[(DZk)∗ Zk − (DZk)Z∗
k ]. The total Hamiltonian is given by

HT =
∫

d2x(Hc + λ0

0 + ω0θ

0) (8)

The consistency condition {
0, HT} ≈ 0 and {θ0, HT} ≈ 0 lead to secondary
constraints


1 = 2J0 −
(

∂iπ
i + θ

2π2
εi j∂i A j

)
≈ 0 (9)

θ1 = π k Zk + π̄ k Z∗
k ≈ 0 (10)

respectively. The consistency of the secondary constraints (9) and (10) do not
generate any new constraints. It is easy to check that the constraints (
0, 
1)
are first-class, and the others (θ0, θ1) are second-class. According to the theory of
canonical quantization of constrained Hamiltonian system, for each first-class con-
straint a corresponding gauge condition should be chosen. We choose the Coulomb
gauge �0 = ∂i Ai ≈ 0, the stationary of the Coulomb gauge ∂i Ȧi ≈ {�0, HT } ≈ 0,
and another gauge constraint is obtained

�1 = ∇2 A0 + ∂iπ
i − θ

2π2
εi j∂i A j (11)

According to FS path-integral quantization scheme, the phase-space gener-
ating functional of Green function for the system (1) is given by (Li and Jiang,
2002)

Z [Jα , Kα , Ul , V n , W i ] =
∫

DφαDπαDλlDµnDωiδ(
)δ(�)δ(θ ) det |{
l , �n}|

× [det |{θi , θ j }|] 1
2 exp

{
i
∫

d3x(L P + J αφα + Kαπα

+ Ulλl + V nµn + W iωi )

}
(12)

Here we have introduced the exterior sources (J α , Kα , Ul , V n , W i ) with respect
to the field (φα , πα , λl , µn , ωi ), and the exterior sources (Kk , K̄k , Kµ) with respect
to momenta (π k , π̄ k , πµ), λl , µn , and ωi are multiplier fields. It is easy to find out
that det |{
k , �l}| is independent of field variables. Thus, we can omit this factor
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from the generating functional. Through the calculation of det |{θi , θ j }| and using
the properties of δ-function and integral of Grassman variables, the expression
(12) is written as

Z [Jα , Kα , U i , V i , W i ] =
∫

DφDπDλDµDω × exp

{
i
∫

d3x
(
LP

eff

+J αφα + Kαπα + U iλi + V iµi + W iωi
)}

(13)

where

LP
eff = LP + Lm + Lgh (14)

LP = πk Żk + π̄k Ż∗
k + πµ Ȧµ − Hc (15)

Lm = λl
l + µn�n + ωiθi (16)

Lgh = 4C̄(x)(Zk(x) ∗ Z∗
k (x))2C(x) (17)

3. CANONICAL WARD IDENTITIES

Let us now construct the gauge transformation for a system with Lagrangian
(1). The gauge generator for this system can be constructed via first-class con-
straints (4) and (9) (Li and Jiang, 2002)

G =
∫

V
d2x[ε̇(x)
0 − ε(x)
1]

=
∫

V
d2x

{
ε̇(x)π0 − ε(x)

[
2J0 −

(
∂iπ

i + θ

2π2
εi j∂i A j

)]}
(18)

This generator produces the following transformation


δZk = {Zk(x), G} = −2i Zk(x)ε(x)
δZ∗

k = {Z∗
k (x), G} = 2i Z∗

k (x)ε(x)
δAµ = {Aµ(x), G} = −∂µε(x)
δπ k = {π k(x), G} = 2iπ k(x)ε(x)
δπ̄ k = {π̄ k(x), G} = −2i π̄ k(x)ε(x)
δπµ = {πµ(x), G} = θ

2π2 ε
i j∂iε(x)

(19)

Under the transformation (19) the canonical Lagrangian (15) is invariant. The
change of (14) under the transformation (19) is given by

δLP
eff = −µ0∇2ε(x) + µ1(x)

[
θ

π2
εi j∇2ε(x) − ∇2ε̇(x)

]
(20)
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The Jacobian of the transformation (19) is equal to unity. The generating functional
(13) is invariant under the transformation (19); this yields the following Ward
identities (Li, 1994, 1996)(

−∇2 δ

δU 0
+ ∇2∂0

δ

δU 1
+ θ

π2
εi j∇2 δ

δU 1
− ∂µ Jµ − 2 J̄ k δ

δ J̄ k
+ 2J k δ

δ J k

+ 2K̄k
δ

δ K̄k
− 2Kk

δ

δKk
− θ

2π2
εi j∂i Kµ

)
Z [J α , Kα , Ul , V n , W i ] = 0 (21)

Let Z [Jα , Kα , Ul , V n , W i ] = exp{iW [J α , Kα , Ul , V n , W i ]} and use the defini-
tion of the generating functional of proper vertices �[J α , Kα , Ul , V n , W i ] which
is given by performing a functional Legendre transformation on W [J α , Kα , Ul ,
V n , W i ],

�[J α , Kα , Ul , V n , W i ] = W [J α , Kα , Ul , V n , W i ] −
∫

d3x(J αφα

+Kαπα + Ulλl + V nµn + W iωi ) (22)

and 


δW

δ J α
= φα

δ�

δφα

= −J α




δW

δKα

= πα

δ�

δπα
= −Kα




δW

δV n
= µn

δ�

δµn
− V n

(23)

Then (22) becomes

−∇2µ0 + ∇2µ̇1 + θ

π2
εi j∇2µ1 + ∂µ

(
δ�

δAµ

)
+ 2Zk

(
δ�

δZk

)
− 2Z∗

k

(
δ�

δZ∗
k

)

−2π k

(
δ�

δπ k

)
+ 2π̄ k

(
δ�

δπ̄ k

)
− θ

2π2
εi j∂i

(
δ�

δπµ

)
= 0 (24)

We functionally differentiate (24) with respect to Zk(x) and Z∗
k (x), and set all

fields (including multiplier fields ) equated to zero, Aµ = Zk = Z∗
k = µ0 = µ1 =

π k = π̄ k = πµ = 0; we obtain

∂µ
x1

δ3�[0]

δZ∗
k (x3)δZk(x2)δAµ(x1)

+ θ

2π2
εi j∂ i

x1

δ3�[0]

δZ∗
k (x3)δZk(x2)δπµ(x1)

= 2δ(x1 − x3)
δ2�[0]

δZk(x2)δZ∗
k (x1)

− 2δ(x1 − x2)
δ2�[0]

δZ∗
k (x3)δZk(x1)

(25)
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Substituting (3) into (25), one gets

∂µ
x1

δ3�[0]

δZ∗
k (x3)δZk(x2)δAµ(x1)

= δ(x1 − x3)
δ2�[0]

δZk(x2)δZ∗
k (x1)

−δ(x1 − x2)
δ2�[0]

δZ∗
k (x3)δZk(x1)

(26)

Similarly, differentiating (24) many times with respect to field variables and setting
all fields equal to zero, one can obtain various Ward identities for proper vertices.

4. FRACTIONAL SPIN AND STATISTICS

If the effective canonical action I P
eff = ∫

d2xLP
eff is invariant under the follow-

ing global transformation in extended phase space


xµ′ = xµ + �xµ = xµ + εσ τµσ (x , ϕ, π )
ϕ′(x ′) = ϕ(x) + �ϕ(x) = ϕ(x) + εσ ξσ (x , ϕ, π )
π ′(x ′) = π (x) + �π (x) = π (x) + εσ ησ (x , ϕ, π )

(27)

where ϕ and π denote: ϕ = (Zk , Z∗
k , Aµ, λi , µi , ωi ), π = (π k , π̄ k , πµ), and

εσ (σ = 1, 2, . . . , r ) are infinitesimal arbitrary parameters, and the Jacobian of
the transformation (27) is equal to unity, then, according to canonical Noether
theorem in quantum formalism (Li, 1996a,b,c), there are conserved laws at the
quantum level

Qσ =
∫

V
d3x[π (ξσ − ϕ,kτ

kσ ) − Heffτ
0σ ] = const (28)

where Heff is an effective Hamiltonian density connected with LP
eff. Under the

spatial rotation τ 0σ = 0, Aµ are vector fields and the term Lgh does not involve the
time derivative of field variables, and the Jacobian of the transformation of field
variables are equal to zero. Thus, according to ( 28 ) the quantal conserved angular
momentum for this system is given by

L =
∫

d2xεi j
[
(xiπ

k∂ j Zk + xi π̄
k∂ j Z∗

k ) + (
πµSµν

i j Aν + xiπ
µ∂ j Aµ

)]
(29)

where Skl
i j = δk

i δ
l
j − δk

j δ
l
i . The quantal conserved angular momentum under the

rotation in (x1, x2)plane coincides with the result derived from classical Noether
theorem. Substituting (3) into (29), one gets

L =
∫

d2xεi j (xiπk∂ j Zk + xi π̄k∂ j Z∗
k − xi F0i∂ j Ai ) −

∫
d2x F0i ′ Si ′ j ′

i j A′
j

+ θ

2π2
εi j

∫
d2xxi A jε

kl∂k Al (30)
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On the gauge constrained surface, one has

∂iπ
i = −∇2 A0 + θ

2π2
εi j∂i A j (31)

Substituting (31) into (9), one gets

J0 + ∇2 A0 = θ

2π2
εi j∂i A j (32)

From the Eq. (32), according to Gauss integral theorem we obtain

Ai (x) = −2π

θ
εi j∂ j

x

∫
d2 yG(x , y)J0(y) (33)

where

�G(x , y) = δ(2)(x − y) (34)

Thus, the third term on the right hand of Eq. (19) is written as

θ

2π2

∫
d2xεi j xi A jε

kl∂k Al = π

2θ
Q2 (35)

where Q = ∫
d2x J0, the first term on the right-hand of Eq. (20) is the orbit angular

momentum operator, the second is normal spin term, the third is the anomalous
one which is interpreted as an anomalous spin operator (Li, 1996a). We denote this
spin operator by S, S = π Q2

/
2θ , and the one-particle (anyon) state is denoted by

|1 > any, which carry one unit of charge. Then, if one rotates the one-particle state
with S, one obtains

eiβS|1〉any = eiβ(π/2θ )|1〉any (36)

where β is the rotation parameter. The eigenvalue of spin operator S is the spin s.
Thus one obtains a relation between the spin s and the coefficient θ in CS term,
namely

s = π

2θ
(37)

If we take β as 2π , for θ = π
/

(2n + 1)(n ∈ Z ), the one-particle state picks up
a minus sign implying it is a fermionic, and these values of θ let the spin s take
half-integer values. While, for θ = π

/
(2π )(n ∈ Z ), the one-particle state does

not change, and hence it becomes bosonic, and the spin s takes integer values,
for the other values of θ , the state becomes anionic, and the spin s is fractional.
The fractional spin of the CP1 non-linear sigma model with AMCS term is also
occurrence as well as the Maxwell kinetic term is absent (Panigrahi et al., 1988).
It is worthwhile to point out that we do not find out the difference of the fractional
spin term as those between in (Jiang et al., 2004) and (Kim et al., 1994).
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